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ABSTRACT

The applicability of standard mathematical techniques for
analiysis of reliabllity of components exposed to a radiation
environment is presented. The sensitivity of faillure-distribution
functicns, data-presentation techniques, statistical parameters,
and types of measurements to practical analysis methods 1s demon-
strated. With the 1nsight galned from the analysis methods, a
research and development program was designed to establish qualified
test procedure3s for long-term nuclear-development techniques. 1In
addition, the lack of practical standard test techniques is sub-

stantiated and standard data-reporting methods are recommended.
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SECTION I
INTRODUCTION

Scientific interest in the relationship between radiation
effects and reliability has increased with the advancement in
space technologlies and the adveui of nuclear propulsion and
nuclear auxiliary power. The long-term missions associated with
future space objectives, especially those of a nuclear nature,
have created a critical requirement for methods of predicting
system response to long-life complex environments.

This study was initiated to determine the relationship be-
tween radiation effects and reliability of space-systems com-
ponents and to investigate the applicability of various com-
ponent-reliability predicting methods relative to the utiliza-
tion of nuclear auxiliary power.

The main result of this study is the realization of the
advantages of applying statistical techniques to preplanning,
performing, and analyzing reliability studies. Therefore, the
basic principies of statistical analysis are presented in detail,
and methods of analysis are demonstrated by application to avail-
able radistion-effects and reliability data.

Present-day test techniques and military specifications are
inadequate for implementing new long-term components and for per-
forming practical development of long-term programs. A proposed
program for developing long-term techniques is outlined, the lack

of standard test techniques is pointed out, and data-presentation

methods are suggested.




SECTION II
MATHEMATICAL MODELS ANALYSIS

Although a sensitivity analysis was performed simultaneously
with the mathematical models analysis, the latter 1s presented
first in order to familarize the reader with the mathematical
and statistical concepts essential to understanding the techniques
and results presented in this report,

The obJjective of the mathematical models analysis was to
investigate and develop analytical models that can be used
to describe thcae relatiosnships between radiation effects and
reliabllity that were observed in the sensitivity analysis, To
achieve this objective, the mathematical models analysis was
performed in three phases:

Phase 1. Investigation of fundamental reliability concepts

and relationships, possible radiation-effects reliability

models, and reliability probabllity density functions,

Phase 2. Selection of the '"best" family of failure distri-

butions for use in describing the observed relationships

between radiation effects and reliability; presentation of
parameter estimation techniques for the selected fallure
distribution; and determination of the radiation-effects
faiiure rate with the use of a statistical multiple-regression
analysis,

Phase 3, Investigation of the consequences of using the

commonIy assumad exponential reliability distr '

radiation-effects reliability model.
These three phases are described irn detall in Sections 1, 2,
and 3.
Gection 1 describes (z) fundamental reliability concerts anc

the analytical relationships between probabllity density functiocns,

failure-rate functiecns, and the resulting reliability equations;
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(b) mathematical models which can be used to represent the
reliapllity of electronic equipment operating in various nuclear
environments; and (c) probability density functions which are
considered here for their capabllity of representing the rellability
of equipment subjected to a nuclear environment.

Section 2 presents engineering and statistical techniques
for use iIn estimating the true, but unknown, failure distribu-
tion., The selection of the unknown fallure distribution is
based upon the analysis of empirical test data. The selection
techniques presented are based upon the concept of discrimination
between a priorl failure distiributions by means of engineering
goodness-of-fit measures and statistical goodness-of-{it tests,
The particulai techniques considered are (a) graphical goodness-
of-fit comparisons by the use of probability papers, (b) nonpara-
metric and parametric statistical goodness-of-fit tests, and
(¢) comparison of the normalized residual sum of squares,

Also presented in Section 2 are the procedures for estimating
the parameters of a Weibull distribution, with special emphasis
~iven to the graphical technique, which 1s based upon the
method of least squares. The placement of confidence intervals
upon the Weibull cumulative density function 1s also considered.
In addition, Section 2 presents a technique for determining the
reliabllity function; this technique is based upon the use cf a
statistical multiple-regression analysis of the fallure-rate
function,

Section 3 considers the effects of an erroneous exponential

assump-ion upon two factors when the true but unknown fallure




distrivoution is a Weibull distribution with shape parameter g > 1,
These factors are:

e Rellability estimates based upon actual test data.

eThe testing errors of any subsequently designed test program.

1. Rellability Concepts

a. Reliability Relationships

This subsection presents an exposition of the reliability
concepts, equations, and relationships employed in this study.
The purpose of this exposition is to clarify the reliability
concepts and terminology that are used throughout this report.

The reliablility of a device can be expressed in terms of any
applicable random variable or variables; however, for purposes
of exposition, it will be expressed as a function of the single
random variable - time, Thus, reliability will be defined as
the probability of a device operating within specified limits
for the time and operating conditions specified.

The reliability of a device can be expressed in two equlvalent
ways: (1) in terms of a probability density function or (2) in
terms of the equivalent failure rate. Although system relia-
bilities are almost always presented in terms of a falilure rate,
the commonly used techniques Jf reliability data analysis require
a knowledge of the equivalent probablility-density-function
representation.

The following reliability relationships can be obteined by

the application of elementary probability theory:*

* Throughout this report, unless otherwise specified, the range of
t 1s 0 <t ¢ =




t

F(t) =J f(x)dx (1)
)
R(t) =1 - F(t! (2)
t
R(t) = exp [ [ g(x)dx} (3)
)
where
F(t) = cumulative density function, or c.d.f.
f(t) = probability density function, or p.d.f.
R(t) = reliability function
g(t) = failure rate function

If f(t) is the p.d.f. of the time to failure, it gives the
density of the probability at any point t; for small At, f(t)at
is the probability of a device falling in the interval of time
between t and t + At. Therefore, Equation 1 is equal to the
probability that the device will fail in the time interval
between O and t, and Equation 2 1s equal to the probability
that a device will not fail during the time interval between
0 and t. Further, the probability that a device will fail in

the interval of time between tl and t2 is

2
F(tz) - F(tl) = J r(x)dx
51
The failure rate of a device, g(t), gives the density of the
conditional probability of failure at time t, given that the
device has not failed prior to time t. Thus, for small At,
g(t)at represents the probability that a device which has not

failed prior to time t will fail in the interval (t, ¢t + at).

5




The relationship between the failure p.d.f., f(t), and the

failure rate, g(t), is easily shown to be

g(t) = . £(t) (1)
1 - F(t)

This equation expresses the fallure rate in terms o: the known
p.d.f. and ¢.d.f. To express the reliability, R(t), in terms

of the fallure rate, integrate the differential equation

dF(t

slt)at = =%

over the range O to t. By noting that F(0) = 0, the reliability,
1 - F(t), can be expressed in terms of the fallure rate as given
in Equation 3.

As 1llustrated above, the two methods of expressing reliablility -
in terms of the p.d.f. or the equivalent fallure rate - are identical.
If the underlying form of the p.d.f, or the equivalent falilure rate
and the values of their respective parameters were known, the
consideration of a single approach would be sufficient. However,
the radiation-effects reliability study 1s based on the analysi=
of empirical data and requires consideration of both approaches
for two reasons:

1. The method of estimating (from test data) the parameters
involved differs for the two approaches,

2. Each approach has advantages and djsadvantages in various
situations,

For example, in the p.d.f. approach the general procedure !3 to
assume some well-known p.d.f. for f(t), then estimate, by use of

-raphical procedures, method of moments, least squares, method




of maximum likellhood, or some other appropriate estimation
technique, the parameters of f(t) on the basis of empirical
data. In the fallure-rate approach, the assumption is made
that there exists a transformation, y(t), which transforms

the random variable, time-to-failure t, into a random variable

that 18 exponentially distributed, namely,
R(t) = e-Y(t) (5)

Tnls approach does not attempt to hypothesize the form of the
underlying p.d.f. It merely assumes that the integral of the true

t
failure rate, y(t) = & g(x)dx, can be approximated by a poly-

o
nomial of relatively low degree,

Obviously, in some cases either approach is possible and
the resulting analytical functlions are easily handled. However,
there are many cases that can not be solved by one approach,
but are workable in terms oi' the other approach.

b, Reliabllity Models

The mathematical models {composite, mixed, and fallure rate)
presented in this subsection express the relationship between
radlation effects and reliability for various combinations of
fallure modes,

For purposes of model explanation, it will be advantageous
to express Tellability as & function of the single variable
time, realizing that at any given point in time the failure
rate - and, consequently, the reliability - is dependent upon
the effect of two factors: 1random failures and radiation-

tnduced failures, Thus, the total falilure rate may be consicered




as the result of two forces: (1) the random failure force, which
1s observed in equipment operating under normal environmental
conditions; and (2) the radiation failure force, which is
responsible for the failures that are caused solely by radiation
effects, The obvious extension of these models to make them
2-dimensional for inclusion of the radiation effects is to
consider the total radiation dose as the radiation-effects
varlable. The total dose received is, of course, dependent upon
the radiation rate and the length of exposure., Thus, if rate

is treated as a parameter, it 1s possible to express the effect
of" both failure forces - chance and radiation effects - as a
function of time alone.

(1) The Composite Model

The r-factor composite model is defined as

F(t) = F,(t)

i
where

6i<t<51+1 and 1'1,.-.)1‘

The 51'5 are points of component partition or simply partition
rameters. AS i1llustrated In Filgure 1, the composite model 1is
capable of representing either a single failure distribution or
a cequence of fallure distributions, The partitioning factors
coincide with changing fallure forces or transition periods
produced by a single failure force, Situations in which the
composite model may be applicable are illustrated in Figure 1

and discussed below,
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1. Constant reactor operation. The equipment is subjected
to a constant radiation environment and displays
increasing fallures with increased exposure time.

2. Delayed reactor operation. The equipment is operating
in a normal environment until time ©0,. At this time the
reactor 18 turned on, introducing the radiation-effects
failure force which increases the equipment failure rate.

3. Less than critical dose. The equipment is subjected
to a less-than-critical radiation environment until
time 6,. At this time the reactor is turned off and

the equ{pment 1s operated in a normal environment.

L, Intermittent reactor operation. The equipment is sub-
Jected to varylng radiation environments at intermittent
intervals; consequently, the radiation fallure force
1s present at varylng levels,

The composite model can be used to describe changing fallure
distribations, as 1llustrated above. However, the assumption is
mace that at any point in time the single fallure force or several
fallure forces do combine in such a manner that, within each
partition, it is possible to describe the reliability relationship
by a single fallure distribution. Figure 2a illustrates the
c.d.f. ¢f a 2-component composite model,.

(2) The Mixed Model

The 2-factor mixed model is defined as
F(t) = pFy(t) + qF,(t), p+q=1

where Fi(t) i8 the c.d.f, of the 1th subpopulation, and p and q
are the mix percentages of iubpopulations 1 and 2, respectively.

The mixed model 1s proposed as a radiation-effects fallure
distribution in ¢hich Fl(t) and Fz(t) are the model components
that account for or represent tne cumulative fallure distri-
butions for chance fallures and radlation-effects fallures,
Pl-ure 3 is an {llustration of the subpupulation components and

10




F(t)

F{t)

F(t)

a. Composite Model

F(t) = Fy(t)

for 0<t<$ F2(t)
p(t) = Po(t)

for <t< w

NPC 23,021

Failure-Age (t)

b. Mixed Model

F(t) = pFy(t) + qFa(t) /7

Failure-Age (t)

¢. Failure-Rate Model

F(t) = Fl(t) + Fa(t)

Failure-Age (t)

Figure ¢
and Failure-Rate Models
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Schematlec Plots of the Composlite, Mixed,




Chance Effects

Fy(t)

—

I

Failure-Age (t)

F(t) = pFy(t) + aqFp(t)

p = % subject to
chance failures

q = % subject to
radiation failures

Fo(t)

F(t)

NPC 23,320
Radiation Effects

Failure-Age (t)

Combined Effects

1/7

Failure-Age (t)

Figure 3 The Mixed Reliability Model
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the results of their mixture, The appllicability of the mixed
model as a radlation-effects reliability model can best be
evaluated by considering the development or theoretical basis of
the model, The mixed model can be considered as being derived
from the solution of the problem described below,

A populatior. of components is to be developed by accumulation
of components from a production line., The probability of obtaining
a defective component upon random selection from the production
process is equal to p. The probabllity of obtaining a nondefec-
tive component upon random selection from the production process
is equal to q. The so-called defective items are subject only
to chance fallures, and the so-called nondefective items are
subject only to radiation-induced failures. It is further known
that the defective and nondefective items have cumulative failure
distributions Fy(t) and Fp(t), respectively. If a population of
components is gathered from the above production process and
operated in a radiation environment, the following question arises:
What 1s the failure distribution of the combined population?

From elementary probability theory, it is known that the
resultant probability of a component falilure on or before time
t 1s equal to the product of the probability of drawing a
defective component times the probability that the defective
compcent fails on or before time t, plus the probability of
drawing a nondefective component times the probability that it
fails on or before time t. Thus, the fallure distributicn of
the combined population 1is

F(t) = pF(t) + qF,(t)

13




In summary, Fy(t) is the c.d.f. of the itk subpopulation.
The quantities p and g are the proportions of the subpopulations
mix, or simply the mix parameters. This model combines two
subpopulations with known failure distributions in the proportions
p and q to establish the fallure distribution of the mixed
population,
Situations in which the mixed model may be applicable are
presented below:
1. Mutually exclusive fallure effects, If a lot of com-
ponents consist of p percent 'defective" components,
say off-the-_helf items, and q percent "nondefective"
components, say radiation-hardened items, the mixed

model is appropriate for describing the failure distri-
bution of this lot when operated in a radiation environment.

2. Combined batches or manufacturers., If a lot of components
18 a combination from two different batches or manufac-
turers, with independently determined failure distributions,
the mixed model 1s appropriate for describing the resulting
failure distribution.

Figure 2b illustrates the c.d.f. of a 2 -component mixed model.

(3) The Failure-Rate Model

The failure-rate model is defined as

F(t) =1 - exp| - f g(x)dx]
o

where g(x) 1s the failure rate.
The fallure rate for a 2-factor, chance-plus-radiation-effects,

fallure-rate model can be expressed in the following form:
g(t) = SI(UC) + Se(tiR) + I(tg, tg)
where

(t;C) 1s the contribution of chance failures to the

'1 total fallure rate and 1s dependent upon the

14
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type of equipment and the length of time the
equipment has been operating.

go(t;R) 1s the contribution of radiation-effects failures
to the total failure rate and is dependent upon
the radiation environment and the length of time
the equipment has been operating.

I(tc,tR) is the contribution of the interaction effects
that result from combining the chance and
radiation-effects failure forces.

C and R denote the parameter vectors assocliated with the
chance and radiation-effects failure rates,
respectively.

The salient features of this model are:

1, It has the capability of representing reliability
models that can be expressed in terms of a single
failure distribution,

2. It is extremely flexible in the synthesis cf a
reliabil.ty model when the equipment under study 1s
subject to more than a single failure force, but
the only data available are those that describe the
failure distributions of the equipment operating,
subject to only one failure force at a time,.

3. It automatically eliminates the problem of normalization
that i1s encountered when combining probability density
functions directly.

Figure 2¢ 1llustrates the c.d.f. of a 2-factor fallure-rate
model for which the interaction failure-rate component 1is

zero,

¢. Rellability Distributions

Several distributions (Weibull, exponential, Rayleigh,
extreme-value, truncated-normal, and 1og-norma1) were studled
to determine their applicability and versatility for representing
component reliability in a radiation environment. Since these
dtstributions are being used to represent the operating 1life
of various components, the variable in question is a non-

negative number. Consequently, in the work that follows the

15
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ranzge of t Is ¢t 2 0, To relocate a fallure distribution to
some origin greater than zero - to account for a so-called
cuarantee period (that 1s, a failure cannot occur before a
certain time has eiapsed) - the location parameter gamma,

Y 20, is introduced. Then, of course, the range of ¢t
becomes t 2 v. The p.d.f.'s, their parameters, and relation-
ships to rellability, as discussed in Section II-la, are
presented below,

(1) The Weibull Distribution

The Weibull cumulative density function is defined as

B
P(t) = 1 -exp[-_(ul_]
a

where

t2y, v 20, a,B

and
a = the scale parameter
B8 = the shape parameter
v = the location parameter

The Welbull probability density function is
) Pt

f(t) = ﬂ(t -7
a

_ ot -q)P ]

o |

a
If the falilure distribution of a component can be described by
a Welbull distribution, the reliability function of Equation 2
is

R(t)”l» 8 t < ¥
R(t)-exp[- (t -v) ] t 2 v

a

Upon substitution of the Welbull ¢.d4.f, and p.d.f. into

16




Eq.ation 4, it is seen that the failure rate, g(t), for a
Weibull distribution is a decreasing, constant, or increasing

function, depending upon the value of B :

P

g(t) = £l =Y
aQ

Expressing reliabllity in terms of the failure-rate approach

gives ldentlical results:

R(t) = 1, t < v
t B-1
R(t) = exp| - [ Blx - v) ax y ot 2y
o a
B
R(t) = exp [- (t;ﬂ’) ], t 2 v

One of the factors contributing to the popularity of the
Weibull distribution as a fallure distribution for use in
reliabllity work 1s its versatility. For example, the Weibull
distribution encompasses the exponential and Rayleigh
distributions. These distributions are special cases of the
Welbull distribution which can be achieved by setting the
shape parameter £ equal to 1 and 2, respectively. The family
of exponential distributions is by far the best known and most
thoroughly explored distribution in reliablility work,

The exponential distribution has a number of desirable
mathematical properties, but 1ts applicabllity to radlation-
effects reliabllity work is limited because of its constant
fallure rate, PFor a constant failure rate to be applicable,
previous equipment operation and exposure to a radiation

environment must not affect the equipment's future 1if2,

17
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The Exponential Distribution ( B = 1). The 2-parameter

exponential distribution is a Weilbull distribution with shape
parameter B8 = 1. The c.d.f., p.d.f., and fallure rate of

this distribution are presented below:

F(t) =1 - exp [- -Lt_:_l)—]
£(t) El exp [- Jl—;—l)—]

1
a

1 ]
—~
ct
~
1

The Rayleigh Distribution ( B = 2), The 2-parameter

Rayleigh distribution is a Weibull distribution with shape
parameter B8 = 2, The c.d.f., p.d.f., and failure rate of

this distribution are presented below:

2
F(t) = 1 - exp [_ ilii%.lﬁl__ ]
r() = At = V) oxp [_ (¢t - n° ]
a a
g(t) = 28 - )
a

(2) The Extreme-Value Distribution

A modification of the extreme-value c.d.f. 18 defined as

F(t) =1 - exp{- a [exp(t - v) - 1]}

where
and

a is the scale parameter

v is the location parameter.

18




The modified extreme-value p.d.f. is

f(t) = a exp(t - 7v)exp< -a [exp(‘c - v) - l]}

Substitution of these two equations into Equation 4 gives the

failure rate for the modified extreme-value distribution:

g(t) = a exp (t- v).

(3) The Truncated Normal Distribution

The truncated normal p.d.f. 1is

£(t) =

2
1 L1t -
o o |-+ |
0]

g 0, 0L p<oo, t2

where ¢ 18 a normalizing constant defined as

1|

t - u
ec = exp - e ——————t—t—— dt
¢ y 2T o 2 | o )
and

0 is the scale parameter

L 18 the location parameter,

(4) The Loz-Normal Distribution

The log-normal p.d.f. 1s

2
1 1 logt - )
ft = ——— C O oy’ »
(t) tg vVor P 2 o
g > 0, 0€ uc< oo, t20

The fallure rates for the truncated-normal and log-normal

dlstributions are rather complicated expressions; consequently,

19




the fallure rate approach is not recommended when dealing with
these two distributions, Further generalizations of these two
distributions to account for the so-called guarantee period
can be achieved by replacing t by (t - «v), where ¥ 1s the
guarantee time,

(5) Graphical Presentation of Reliability Distributions
for Various Parameters and Forms

A graphical illustration of the p.d.f.'s, c¢.d.f.'s, and
failure rate forms of reliability models discussed above are
presented in Figures 4, 5,and 6., This presentation is used to
sraphically i1llustrate the reliability models and how they
change for various input parameters., The rellabllity models
differ mathematically, but as can be seen from Figures 4, 5,
and o, the graphical presentations are quite similar, especlally
for the c¢.d.f.'s in Figure 5,

2. Methodolngy and Results of the Mathematical Models Failure
Data Analysis

One of the basic problems encountered in any failure data
analyslis 1s that of verifying or rejecting the various a priori*
failure distributions, Selection of the appropriate failure
distribution and the assoclated techniques of failure data
analysis are presented in this subsection. Because of the display
and use of radiation-effects reliablility fallure data through-
out this subsection, the random variable time t s replaced

with that of radiation dose d .

* a priorl Determined in advance - before the fact - as opposed
to a posteriori,determined in retrospect - after the fact.
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a. Selection of a Reliability Model

The radiatlon-effects reliability models presented in
Section II-1b are expressed 1n terms of arbitrary cumulative
density functions and fallure rates. Section II-1lc presents
various probability density functions that are frequently used
to represent life-test data. Since the reliability models
of Section II-1b consist of individual and combinations of
the individual probability denslty functions of Section II-2¢,
the suggested approach to model selection 1s:

1, Determine the p.d.f. or fallure rate of the equipment
within the various regions of partition, subpopulations,
or range of parameter interest.

2. Combine these results as indicated in the reliability
models, using that model which fits the particular

situation at hand.

b, Selectlion of a Reliability Distributicn

An important step in any empirical reliability analysis 1s
tne mathematical formulation or the underlying fallure distri-
oution, Occasionally the form of the underlying failure
distribution may be derived from knowledge of the physics of
the materials involved; but, as a rule, a distribution type
must be selected on the basis of empirical data. However, the
distribution of the population cannot te uniquely determined by
a set of empirical data. In fact, 1t is quite often possible
to describe the same set of empirical data with several
uifferent mathematical distributions., Although the models

ma, differ mathematically when they are utilized for a given

set of observational data, they lead to distribution functions




whose graphlical representations are almost identical; this is
especially true when dealing with small sample sizes, The
procedures for accepting or rejecting any hypothesized distri-
bution as being the true underlying fallure distribution are
based upon some type of goodness-of-fit test or measure, When
possible, the selection of the fallure distribution should be
based upon the results of a statistically valid goodness-of-fit
test. However, this 1s frequently impossible and consequently
the selection must be based upon the comparison of various
goodness-of-fit measures,

(1) The Use of Probability Paper

By using a speclal type of graph paper, commonly called
probabllity paper, it is possible to determine graphically
the fit of a set of sample data to the various forms of failure
distributions presented in Section II-lc. Probability paper
1s so constructed that a plot of the random variable d versus
the theoretical cumulative density function F(d) will produce
a Straight line. Consequently, if a set of data is actually
a random sample from a specified falilure distribution, a
plot of these data on the probabllity paper of the specified
distribution should approximate a straight line. Thus, by
plotting a single set of sample data on the probability paper
of each fallure distribution being considered, a graphical
goodness-of-fit comparison 1s performed, and the selection of
a particular paper (on the basis of the best approximating

strairht line) 1s identical with the choice of a failure
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alstribution., A graphlical goodness-of-fit comparison of the
provabllity density functions of Section II-lc follows, For
this comparison the raillation-effects reliability data presented
in Table I are plotted in Figures 7 through 11 on probability
paper representing each failuire distribution,
In those cases where a reasonable fit is obtained on the

rcbabllity paper, one can cbtaln estimates of the parameters
of the underlylng distribution from the properties of the
resulting straight line. (For the general theory of parameter
estimation by the use of probability paper see Reference 1,)

(2) Coodness-of-Fit Analyses

Briefly stated, statistical goodness-of-fit tests involve
specifying a priori some cumulative density function and
comparing it to an empirical cumulative density function., The
deiree of similarity between the observed and the theoretical
iistributions is then used as a basis for accepting or rejecting
the a priori failure distribution,

(3) Nonparametric Goodness-of-Fit Tests

The most commonly used goodness-of-fit test is the Chl-square
test, Use of the Chl-square test 1s often not possible, however,
because of its larse-sample-size requirements, In the present
stud:., for example, the small sample sizes encountered did not
meet tihe requlrements of the Chl-square test for the minimum
expected frequencles per subdlvislon,

The Rolmogorov-Smirnov was the test selected for use as

a -oodness-of-Tit test in this study (Ref. 2). This test treats
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Table I

2N1613 TRANSISTORS TESTED IN A
RADIATION ENVIRONMENTZ

" batture Fla) | dxiomh | a0mh | oq x 10k
i 1/(n+1) -10% Change | -20% Change | Transformed
-20% Change
1 0.091 0.66 5.30 0.30
2 0.182 1.39 5.39 0.39
3 0.273 1.39 5.76 0.76
4 0.364 1.39 6.12 1.12
5 0.455 2,12 6.40 1.40
O 0.546 2.84 6.50 1.50
7 0.637 2.84 7.20 2.20
8 0.728 3.21 7.31 2.31
9 0.819 3.21 7.94 2.94
10 0.910 3.57 9.40 4,40

8pata are from NARF-LMSC tests where hFE’ DC transistor gain,

was obtained for collector to emitter voltage, V = 10 v, and

CE
collector current, IC = =1 ma. The two fallure criteria are

for -10% and -20% cliange in hpp. The number of transistors
tested was N = 10,
bThe data in this column are a transformation of the data in

column 4, The transformation is (d, - ¥), where d, 1s the
~amma dose at the 1th fallure recorded in column 4 and

~

Y = 5,0 x 104 rad(C) zamma dose. (See page 52 for the method
of estimating v .) The ( - ) notation is used to denote an

estimate of the true parameter in the mathematical model,
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each observation individually and consequently may be used
for small sample sizes, It is based on the sampling distri-
vution of the maximum deviation, D, between the a priori and
the observed cumulative density functions, i.e.,

D= maximum|F(d) - o(d)| ,
where F(d) and 0(d) represent the cumulative density functions
of the theoretical and observed failure distributions, respec-
tively, Table II summarizes the results obtained from applying
the Kolmogorov-Smirnov goodness-of-fit test to the radiation-
effects reliabllity data of Table I, As indicated in Table II
this test was applied to each of the failure distributions
presented in Section II-lec.

As seen in Table II none of the a priori failure distri-
outions can be rejected on the basis of the Kolmogorov-Smirnov
test. The only a priori distribution for which the sample
statistic D 1s even close to the critical region is the
exponential distribution., In view of this fallure to reject
any of the a priori fallure distributions, it should be noted
that the Kolmogorov-Smirnov test is the most powerful (i.e.,
most discriminating) of the nonparametric tests, Consequently,
lts fallure to reject any of the a priori fallure distributions
can be attributed to the small sample sizes involved,

{4) Parametric Goodness-of-Fit Test

The most powerful class of goodness-of-fit tests consists

of parametric tests that are desizned for specific distributions,
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Table II
SUMMARY OF THE NONPARAMETRIC

GOODNESS-OF-FIT TEST

A Priori Observed Sample 80% Level
Failure Statistic D2 Of Significance
Distribution for Test
Statistic D
-10% Change | -20% Change atistic
in hFE in hFE
GO b c
Weibull 0.144 0.042 0.322
B > 1
Exponential 0.270 0.084 0.322
Truncated
Normal 0.104 0.076 0.322
Log
Normal 0.150 0.070 0.322
Extreme
Value 0.154 0.071 0.322

3In order to reject the hypothesis (at the 80% level of
slznificance) that the underlying failure distribution
1s of a specified type, the observed sample statistic D
must be equal to or greater than Dgog = 0.322 (see Ref. 2 ).

“The shape parameter of the Weibull distribution, B8 ,
was determined a posteriori,

- 4
®3ased on analysis of the transformed data [v = 5,0 x 10 rad(c)
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The parametric tests found to be most suitable for the small
sample sizes encountered were (a) the Geary and Pearson tests
for normality and log normality and (b) a test presented by
Epstein for exponentiality,

As a goodness-of-fit test i r normality, the Geary and
Pearson test of skewness and kurtosis 1s suggested (Ref, 3).
There is a series of such Lcsts for skewness and kurtosis;

however, the statistic
n
N

i=1
L § -

i=1

1/2

we.s chosen as being the most appropriate for use in this study
because of sample sizes and power considerations, The Geary
and Pearson test 1s based on the fact that 1f the observations
do come from a normally distributed population, then the
sampling distribution of the statistic S is known, This statistic
can also pe used as a goodness-of-fit test for sample data
believed to have come from a log-normal population, This is
accomplished by taking the logarithms of the sample data before
computing the statistic S. The upper and lower 1%, 5%, and 10%
points for the sampling distribution of S can be obtained from
Table 34 of Reference 4,

Table 1III summarizes the results obtained from applying
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Table III
SUMMARY OF THE PARAMETRIC
GOODNESS-OF-FIT TEST

Observed Sample
A Priori Statistic S or Z 90% Level of
Fallure Significance for
Distribution -10% Change -20% Change Test Statistic
S or 2
in hFE in hFE
Exponential Z = 2.48° Z = 4,758 Zgog = 1-65
Truncated a
Normal S = 0.92 S = 0.81 S = 0.889
90%
Log

SIndicates those cases for which the sample statistic is greater
than the critical value, for the tzst under consideration, and
consequently those cases for which the a priori fallure distri-
bution can be rejected at the indicated level of significance.
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the Geary and Pearson test for normality and log normality

to the radlation-effects reliabllity data of Table II. In
Reference 5 Epstein prcsents several procedures for testing

the validity of the assumption that a set of sample observa-
tions comes from an exponential distribution. Epstein's

Test No, 3 has been selected for use in this study on the basis
of sample size and power considerations. This test 1s based

on the fact that if the observations do come from an exponential
distribution, then the statistic Z, defined below, is an
approximate standard normal deviate, With d1 as the failure
dose and r as the number of fallures that have occurred

on or before termination of the test, statistic Z is defined

as

ril dy - [_(P_-l)_ : dr]
1=1

2

-1
d, .=
r[12

7 =

]1/2-

Table IV summarizes the results obtained from applying
Epstein's Test No, 3 for the exponential distribution to the
radiation-effects reliabllity data of Table I.

(5) Comparison of the Normal!zed Residual Sum of Squares

A statistlic that can be usea to measure the goodness-of-fit
between an a priori cumulative density functlon and a sample

cumulative density function is the normalized residual sum of

37




Table IV
SUMMARY OF THE NORMALIZED RESIDUAL
SUM OF SQUARES COMPARISONS

Observed Sample Statistics
NRSS
A Priorl Fallure
DIstribution
-10% Change -20% Change
in hFE in hFE
Weibulld 0.U477 0.039°
p>1
Exponential 11.488 0.092
Truncated
Normal 0.570 0.143
Log
Normal 0.723 0.102
Extreme
Value 0.503 0.050

8The shape parameter of the Weibull distribution, B, was deter-
mined a posteriori.

PBaced on analysis of the transformed data { v = 5.0x 10-4 r;d(c)},
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squares (NRSS):

n
NRSS = :;1 [, - E(di)]2 / E(4,)

The d1 1s the value of the observed random variable assoclated
with the 1th sample cumulative density point, and E(di) 1s the
value of the a priorl random varlable assoclated with the 1th
sample cumulative density point. No statistical goodness-of-fit
test (probability statements) can be made with the NRSS because
its distribution 1s unknown. However, the NRSS 1s a quantitative
measure of the degree to which the sample data fit any specified
distribution and can be used as a goodness-of-fit indicator.

Table IV summarlzes the results obtalned from applying the
NRSS goodness-of-fit measure to the radlation-effects reliabllity
data of Table I, As indicated in Table IV, thls goodness-of-fit
measure was applied to each of the fallure distributions
presented in Section II-lec.

(6) Selection Procedure

When using the preceding techniques to select the form of
the unknown failurs density function, the following recommen-
datlions can be made:

1, When possible, the parametric goodness-of-fit test
should be used.

ro

The first alternative is the use of the nonparametric
goodness-of-fit test (in general, these tests are not
as powerful as the parametric test).
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3. When the parametric and nonparametric goodness-of-fit
tests are not applicable, or when these tests are not
powerful encugh to discriminate between the a griori
probability density functions, the selection o he
underlylng failure distribution should be based on
(1) a graphical goodness-of-fit comparison based on the
use of probability paper and (2) a comparison of the
normalized residual sums of squares, with consideration
glven to other factors such as (a) the data fit at the
left-hand tall of the distribution, where the fit 1is of
most concern, and (b) analytical considerations.

Table V presents the conclusions that can be made. on the

basis of the preceding goodness-of-fit analysis, with regard

to the selection of a failure density function. Where pocssible,
a rejection of the respective a priori failure distributions

1s statec. If a statistical rejection was not possible, a
summnary of the goodness-of-fit measures is listed. To verify
the summary statements, refer back to the respective goodness-
of-fit analyses.

Table V also illustrates a problem frequently encountered
when dealing with statistical testing and inference based on
the use c¢f small sample sizes: that is, it i1s not possible
to make definite acceptance or rejection statements in all
cases., Wnhen thlis occurs, the problem of selecting the appro-
priate underlying fallure distribution becomes somewhat
subjective, and the varlous selectlon criterla must be welghted
in dlrect proportion to their relative importance to the
problem at hand.

In the work that follows (Section II-2c), the Weibull

distribution 13 used as the form of the underlylng fallure

dfstrivution. By referring to Table V, 1t i3 seen that this

o/
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dlstribution does not have any claim to Leing the statistically
proven radliation-effects reliability fallure disiribution,
However, strong evidence is presented as to this distribution's
unique capability of expreéssing the observed relationship
netween the radiation parameter dose and rellabil.ty.

¢c. Estimation of the Welbull-Distribution Parameters

wWhen the numerical values of the three Weibull parameters
are known, it is quite easy to ascertain the properties of
the specific distributions. However, wnen only sample data are
avallable from which the values of the parameters are to be
estimated, the problem becomes more difficult - difficult in
the sense that because of the mathematical dependence between
the parameters involved, there is no closed form for the
independent estimation of each parameter. Many artlicles have
been written on estimating the parameters of the Welbull
distribution, However, for purposes cf completeness the equations
involved in the two best-known methods of estimation (i.e.,
moments and maximum likelihood) are presented below,

(1) Method of Moments

The method-of-moments procedure 1s to equate various sample
properties with the corresponding population properties, Then,
the population parameters to be estimated are solved for in
terms of the known sample properties., The required population
properties for the Weibull distribution are as follows:

Mean oy = v + B r(1 4 1/8 )

vartance ¢® = a?® Ir(1+ 28 ) - 31+ 18 )]

b2




_ T +38)-3T (1+2m)r(1+1/8)
37 [r(1+2/8) - r31+1/8)]3?

Skewness &

+ 2 T3(1+1/8)
[I"(l +2/B) - T2(1+ 1/ 5)]3/2

The three statistical measures of the sample data that are

2
used to estimate iy, 0 , and 53 are, respectively,

d = : di/h
i=
s? = \; (a, - 3)2/(n-1)
z, = i [(d - a)3/(1'1-1)] /s
3 1

’—‘I
1
-

It is seen that 1t 1s quite difficult to obtaln a, 3,
and <y explicicly in terms of the three measures of the data,
1, se, and z_. However, given the €3 estimate - that 1is,

3

z, - an approximation of B can be obtained by solving the

3

skewness equation graphically, since g, is a function only

-

of the shape parameter B, With this estimate of 8 denoted

as é and the sample value 82, an estimate of a 1is made:
A - -]l 8/2
i o=ds8d/|t(1+2/8) - r‘"’(1+1/s)} /

and, subsequently, an estimate of vy 13 made:

- 1/5

y=d-a r(1 + 1/8)

(2) Method of Maximum Likelihood

The equations of the maximum llkelihood estimators, which

b3
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provide sufficient statistics if they exist, are:

. n
18 + 1/n Zln(di - )
=1

- [ (g, - &)é 1n(d, -%)] [Z(cli - ) é]-l- 0

(1 - 8)I(a - ¥)7

+[n I (4, - ;)é-l][z(di ] ,;,)é]‘1=0

There 1s no "closed form" solution to these two equations for
é and Q . A soluticn can be obtained by use of iterative
techniques., Once these two estimates are obtained, the scale

parameter a can be estimated:
E a
- v-‘ N [ od
a = fli(di - v) /n

The numerical values obtalned by use of the two methods
iiffer somewhat; however, for small sample sizes there 1s
nothing 1indicating which =eot of estimators 1s better. Application
of statistical estimation theory indicates that the maximum
likellhood estimators are better for large sample sizes - better
in the sense that thelr variances approach a minimum attainable
value as the sample slze Iincreases. For sinall sample sizes,
as encountered in the radiation-effects reliability study, there
'3 no obvious way of choosing between the two methods of

estimation.

by




(3) Graphical Method

A third method of Weibull parameter estimation, which is
presented by Kao (Ref. ©), is based on the use of graphical
techniques. Graphical techniques are heavily employed in the
data analysls of this study. Graphical techniques were selected
for use in this study for the following reasons:

1. Large amounts of data can be quickly analyzed for
general trends and parameter estimatecs.

2. When dealing with small sample sizes, there 1 no
theoretical Justification for selecting one
estimation technique (that is, method of moments,
method of maximum likelihood, or sraphical method)
over the others; however, an empirical analysis, l
outlined and summarized below, suggests that for
nominal sample sizes the graphical method, which
i1s based on the method of least squares, is at least
as good as the other techniques,

(4) Comparison of the Weibull Parameter Estimators

As an lllustration of the accuracy and difference in the
numerical values obtained from each type of estimator, the
following case problem i3 presented:

1. Sample data (N=100) were generated by Monte Carlo

techniques from two Weibull cumulative density

functions with known parameters.

2. Parameter estimates were obtained from the sample |
data using each of the estimation techn!ques.

Tne a priori distribution and the parameter estimates obtained
by each method are presented in Table VI,

i, Weibull Data Analysis

By matnematlcal manipulation of the Welbull c.d.f.,

P(d) = 1 ~ exp [— (@ - ) B/a]

ore can arrive at an expreasion whlich readily lends itself to
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sraphical parameter estimation, as shown below,

Consider the ratio
1/ [1 - F(d)] = exp(dB /a ), Yy =0
By taking the natural logarithm of this ratio twice,
In 1n {1/[1-F(d)}=B ln d - Ina

an equation which has a linear form is obtained, namely,

Y=mX+ ¢
where
Y=1n 1n {1/ [1 - F(d))}
m=8
X=1nd
¢ = - lna

Thus, on Weibull probability paper, which has an ordinate
scale of 1n 1n {1/ [1 - F(d)]} and an abcissa scale of 1n d,
the c.d.f, of a Weibull distribution will plot as a straight
line for which the y intercept and the slope are estimates of
-lna and B , respectively.

Weibull probability paper also has an auxiliary coordinate
System, The auxiliary scales are nonlinear and are to be used
in the direct plotting of the raw data, The abcissa and ordinate
scales of the two coordinate systems are proportioned to one
another in such a manner that the probability paper converts

the relationships expressed on the nonlinear raw-data coordinate

u7




system into the identical relationship on the linear Weibull
coordinate system, If upon the Weibull coordinate system the
relationship takes the linear foerm Y = mX + ¢ mentioned above,
then estimates of « and B can be taken from the graph paper.

An illuantration of using Weibull probability paper for
parameter estimation is presented below, The failure data given
In Table VII and plotted in Figure 12 are taken from a set of

2N718:. transistors tested in a radiation environment.

Table VII

2NT18A TRANSISTORS TESTED IN A RADIATION

ENVIRONMENT?

Rank Failure Percent Rank Failure Percent

i Dose i Failuri i Dose_u Failurf

d 107 F(d)=(_L1_ d 10 =
X (a) (n+1) x F(d)=(ghr)

1 1.39 0.091 5 3.60 0.455

2 2.48 0.182 7.5 4,30 0.637

3 2.58 0.273 7.5 4,40 0.728

5 3.50 0.455 9 5.03 0.819

5 3.55 0.455 10 5.76 0.910

a The data are from the NARF-LMSC test for a failure criteria
of a-10% change In hpp With V. = 20 v and Ic = -10 ma., The

sample size was 10,

In plotting the sample c.d.f., 1/(n+l) is used for the ith

sample cumuls’:ve density point to estimate F(di) (see Pig, 12).
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The transfer is made from the raw data scales d and F(a) to the
Weibull scales La(d) and 1n 1n {1/ [1 - F(d)]} , respectively.
Cn tne Weibull scales the slope of the c¢.d,f. data points and

the y intercept are the estimates of B8 and -1ln q , respectively.
For the 2N718A transistor data tabulated in Table VII and

presented in Figure 12,

y intercept = -3.4 y
= O o
-1lna = -3.4 "% gTTG
& = 30.0 B = 2.50

Thus, the estimated Weibull density functicn is
" 2. 1
F(d) = 1 - exp [-(d) 5/’30.01 .

The reliability for any gamma dose, d, can be obtained by

direct substitution into the scaled reliabllity model
R(a) = exp [-(a)2-3/3¢c.0] .

As indicated in Table VII and Figure 12, the parameter estimates
of this wmudel are basedi on a scale in which 1 unit = 1 x 104
rad(C). The reliability model may be adjusted for use on any
scale desired by applying a linear transformation, as illustrated
in a later paragraph.

(1) The Sample Cumulative Density Function

There are several different estimators that are commonly
used in data analysis to estimate the population c¢.4.f., F(di).
These estimators, togetner with a brief discussion of their

properties, are presented below,
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From a sample of size n, let dl < d2 < ... < dn be the
radiation doses at which the fallures occur. Let F(ai) be the
sample estimate of F(di)’ the true percent of the populacion
elements that fall on or before dose di‘ An unbiased estimator
of F(di) ts its sample mean, i/(n + 1), where i 1s the number of
sample elements that have failed on or before dose dy . Thus,

Case I. F(ai) =1/(n + 1)

The sample c.d.f. - namely, the sample proportion failing
on or before dose d1 - 18 another frequeﬁtly used c¢,d.f, estimator,.
Thus,

Case II, F(ai) =1/n

It 1s a common onractice to use the Case I and Case II
estimators for small and large sample sizes, respectively., If
the point of changing estimators is taken to be a sample slze
of n = 25, the maximum difference which can occur between F(ai)
Case I and F(ai) Case II is 4/100, which i8s negligible when
applied to a graphical plot.

In the Case II estimator, F(ai) increasas by increments of
(1/n). A frequently used variation of this step-function is
civen by

Case III. F(ai) = (1 - 1/2)/n
This estimator is simply the midpoint of each incremental change
of the Case II estimator.

Another estimator that is occasionally employed is derived
from the method of median ranks., The medlian rank !3s an estimate

of the cumulative percenti raiiure for each ordered {silure such

51
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that, in the lorg run, the positive and negative errors of the
estimates cancel each cther, Tables of median ranks are
presented in Reference 8, However, the following equation,
developed by A. Benard in 1953, is an approximaftion that can
be used to estimate the ith median ranl, where median rank =

(1 - 0.3)/(n + 0.4); hence,

Case IV. F(Ei) = (1 - 0.3)/(n + 0.4)

The Case I estimator, which is an unbiased estimator, i1s recommended.

(2) Tied Observations

When ties or indistinguishable differences occur among the
fallure doses, as was the case in Table VII, the following
procedure can te used:

1. The median rank is assigned to each of the tied values,

2. Only one percentage fallure point, F(di), is plotted

for each group of ties, that being the mean percentage
failure of the tied values,
However, it should be noted that if tre least-squares line is to
be calculated analytically rather than estimated graphically, each
percentage failure point, F(di), is to be treated individually,
recardless of whether or not tied observations occur,
(3) Treatment of the Location Parameter.

In the previous example of Weibull parameter estimation by

graphical techniques, the location parameter, Y , was assumed
to be zero, Employing the procedure outlined in the paragraph
dlscussing the general approach, without the v = O assumption,
results In

In 1n{1/[1- F(d)}))= B 1ln(d - v) - 1ln a

52
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Thus, for a Welbull distrlbution in which vy # O, the percent of

fallures, F(d), must be plotted against the fallure dose minus

zamma, (d - y), in order to use the Weibull scales as before to

estimate o and B .

otherwise) musc

Consequently, an estimate of < (the zero assumption or

can be obtained graphically. There are three approaches, any one

of which may be used to estimate the location parameter. The

three different approaches are outlined below as Cases I, II, and

I1I.

Case I

1. Plot the data points

2. Draw the approximating straight line

3. Assume ¥y = 0

4, Obtain the g and B estimates from the approximating
straight line

Case II

1. Step 1 of Case I

2. Fit a curve through the data points (linear or curvi-
linear); let v = the 0,1% fallure intercept

3, Replot F(d) vs (d - «v)

4, Draw a new approximating straizht line

5. Obtain the a and B estimates from the new approximatinc
straizght line

Case III ’

1. Steps 1, 2, 3, and 4 of Case II

n

when both approaches (Cases I and Ii) fall to produce

a linear plot, values within the range of O to the
0.1% fallure intercept are successively chcsen as vy
unttl linearity !s produced for the plot of P(d) vs (d -

53

be made before estimates of the Welbull parameters
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3. Step 5 of Case II

A situation in which vy # O is illustrated in Figure 13,
The failure data from which Figure 15 was constructed
are tabulated in Table I. As seen in Figure 13, the original
data produce a curvilinear plot. Consequently, Case I ( ty = 0)
18 not applicable. Following the apprcach outlined in Case II,
the 0.1% failure intercept and estimate of gamma is seen to
oe ¥ = 5.0 units, Step 3, a replot of F(ai) vs (d1 -v ), is
needed to see whether linearity has been produced; if it has
been produced, one proceeds with Steps 4 and 5. As illustrated
in Figure 13, the estimate & = 5,0 units in the transformed
data approximates a linear plot; thus, proceeding with Steps 4
and 5 ylelds

-lna = -0.80 Ay/ bx = 2.72/2.30
a = 2,23 B =1.18

and the estimated Welbuil distribution function is
- 1.18
F(d) =1 - exp [- (d - 5.0) /2.23] » d2 5,0

It 1s a common practice in reliability work to define the
location parameter <y s a 'guarantee" period within which no
“ailure can occur, This, of course, implies that ¥ 1is some
numoer greater than zero., However, it should be noted that the
additiorn of any constant to the raw data can be a useful technigue
for obtaining a linear plot. That 1s, just because a negative

2% does not flt into the guarantee period concept, it should

not be discarded as a legitimate transformaticn for producing
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a linear plot on Weibull probability paper. As iong as the final
approximating line from which the parameter estimates are taken
13 1inear, the interpretation of vy 1is primarily a matter of
philosophy. Arn example of such a transformation, with & = -1.5,
1s presented in Figure 14,

(4) Change of Scale

A procedure commonly used to facilitate data analysis 1s
that of changing scales, For example, in the problem of
parameter estimation it is of'ten advantageous to apply a linear
transformation to the raw data before beginning the task of
estimating the values o. the population parameters from the
sample data. The procedure is to apply the desired linear trans-
formation to the raw data, determine the estimates of the parameters
on the transformed scale, then determine the relationship that
will convert these est'mates back to the origzinal scale.

The effect of a linear transformation upon the Weibull dis-
tritution is 1llustrated below, Consider the Weibull p.d.f. for

waich v = Q¢

£(d) = [sa a-l/&] exp( A° / a)

If a linear transformation y = c¢d is made, where ¢ is a

constant, the distribution of y is
8-1
f(y) = [ey /a c] exp [-yﬁ/h cB]

In the precedinz 2NT18A transistor example, the parameter
ei3timates were based on a scale in which 1 unit equals 10u rad(C),

and the resulting p.d.f. was
o(4) = (2.541°9/30.0)exp(-4°2/30.0:
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's convert the parameter estimates and the resulting distribution
to a scale in which 1 unit equals 1 rad(C), the following inverse
linear transformation is applied:

y = cd
10% 4

y

10 2.
r(y) = (2.5y1'5/30.0 x 10" )exp(-y 5/30.0 X 1010)

where 1 unit on the y scale equals 1 rad(C).

(5) Determination of the Meximum Allowable Dose

Once the parameters of the reliability distribution have
been estimated from radiation-effects rellability test data,
the foliowing question may arise: What 1s the maximum gamma
dose to which a transistor may be subjected and still maintain
a specified reliability level? The techniques involved in
determining this critical dose, dc’ depends upon the level of
reliabllity specified.

Case I, If the reliability level in question is

within the rauge 0,001 - 0,999, the

critical dose can be read directly from

the Weibull probability paper.
For example, the critical dose for a 0.99<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>